Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Nature Energy ; 2023.
Article in English | Scopus | ID: covidwho-2221823

ABSTRACT

COVID-19 continues to exact a substantial toll on health. While mortality and morbidity associated with the pandemic are the most obvious impacts, social and economic disruptions are becoming apparent. There is reason to believe that the COVID-19 pandemic has slowed or reversed gains in clean household energy use in rural India. Here we describe phone surveys deployed repeatedly in Jharkhand and Bihar to describe pandemic-related changes in household socio-economic conditions and energy-use patterns. Over three-quarters of households reported hardships during the pandemic, including loss of employment and an inability to search for jobs. In turn, some of these households relied more on polluting fuels. Despite nearly all households preferring gas and electricity, we observed varied behaviours related to the cost of and access to these modern energy sources. We highlight the success of India's three-free-cylinders scheme, with 90% of households aware of the programme and utilizing at least one free cylinder. These findings illustrate the utility of high-frequency energy-related questionnaires and suggest that interventions to improve clean fuel accessibility and affordability can increase the resilience of transitions to clean household energy. © 2023, The Author(s).

2.
Aerosol and Air Quality Research ; 22(1), 2022.
Article in English | Scopus | ID: covidwho-1732360

ABSTRACT

The Tamil Nadu Air Pollution and Health Effects study (TAPHE-2) aims to evaluate the relationship between air pollution and birth outcome in a rural-urban cohort of 300 pregnant women. Due to COVID-19 related lockdowns, some TAPHE-2 activities were delayed;however, continuous indoor and outdoor air quality data were collected in and around Chennai, India. We report here the impact of graded COVID-19 lockdown on indoor particulate matter (PM2.5 and PM10) levels based on calibrated data from affordable real-time PM sensors called atmos™ and ambient PM levels from publicly available regulatory monitors. The study period was between 11 March and 30 June 2020 (i.e., 100 days of continuous monitoring), which coincided with four phases of a nationwide graded lockdown. Field calibration coefficients for the atmos PM were derived by collocating them with reference-grade PM monitors. The normalized root mean square error (NRMSE) of the atmos hourly PM2.5 (PM10) improved from 41% to 15% (33% to 18%) after applying the field calibration coefficients. Lockdowns resulted in significant reductions in indoor and ambient PM levels, with the highest reduction observed during lockdown phase 2 (L2) and phase 3 (L3). Reductions as high as 70%, 91%, and 62% were observed in ambient PM2.5, indoor PM2.5, and indoor PM10 relative to pre-lockdown levels (PL), respectively. The indoor PM2.5/PM10 ratio decreased during the lockdown, suggesting a decline in the fine mode dominance in PM10. The indoor-to-outdoor (I/O) ratios in PM2.5 marginally increased during L1, L2, and L3 phases compared to that of PL levels, suggesting an uneven reduction in indoor and ambient PM2.5 levels during the lockdown. © The Author's institution.

SELECTION OF CITATIONS
SEARCH DETAIL